
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 49
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Mathematical Analysis of Stiff and Non-Stiff
Initial Value Problems of Ordinary Differential

Equation Using Matlab
*D. Omale, P.B. Ojih, M.O. Ogwo

Abstract - Many important and complex systems from different fields of sciences are modeled using differential equations. Due to
the complexity of these systems, analytical methods are often difficult or impossible to implement for such problems and so
numerical methods are the way out. The advent of computer applications like MATLAB starting from the mid 20th century has
made a drastic improvement in numerical solutions for differential equations. In this work, we present the solvers in MATLAB for
obtaining numerical solution for initial value problems of ODEs – ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb. Six
problems are solved, three of which are stiff and three non-stiff using the relevant MATLAB solvers and the solutions are
presented.

Index Terms – Advent of computer application, Analytic approach, Differential equation, Dynamic, Matlab, Matrix laboratory, Non-
Stiff, Stiff,

………………………………………….♦…………………………………………

1. INTRODUCTION

The dynamic behavior of systems is an
interesting and important subject of study for
scientists, Marcel B. Finan. (2012). Mechanical
systems involve time related change in position and
speed, electric systems involve change in current and
voltage with time as well as several other systems
from fields like engineering, economics, social
sciences, biology, business and so on. These systems
involving change are represented mathematically
using differential equations. Differential equations are
equations involving the derivatives of a dependent
variable with respect to one or two independent
variables.

Differential equations can be classified as
ordinary or partial. A differential equation is ordinary
if the unknown function is dependent only on a single
variable. If the unknown function is dependent on
multiple independent variables and the equation
involves its partial derivatives, then the equation is a
partial differential equation. Marcel, (2012).

Differential equations are also classified
according to their order. The order of a differential
equation is the highest derivative in the equation. A
differential equation that has the second derivative as
the highest derivative is said to be of order 2. The
highest power of the highest derivative in a
differential equation is the degree of the equation.

In physics, Newton’s Second Law, Navier Stokes
Equations, Cauchy-Riemman Equations, Schrodinger

Equations are all well known differential equations.
The Lotka-Voltera Equations, Verhulst Equations and
Replicator dynamics in biology as well as the
exogenous growth model and Malthusian growth
model in Economics are all represented by differential
equations.

The solution of a differential equation is a value
of the dependent variable in the equation that satisfies
the equation at all points of the solution domain. The
solution of a differential equation at a point is the
value of the dependent variable at that point.
Solutions to differential equations can be categorized
in three broad sections. The analytic approach of
solution, the qualitative approach and the numerical
approach.

The analytic approach seeks to provide an
explicit solution to the differential equation. Many
important equations are impossible to solve using this
method. The qualitative approach does not provide
explicit solutions; rather it uses geometry to provide
an overview of the behavior of the model. The
qualitative approach yields solutions in form of
direction fields, solution curves and phase plots. This
method may be used to validate an analytic or
numeric result. The numerical method provides
approximate values of the solutions to the differential
equation. The numerical method starts with an initial
value of the variable and then uses the equations to
figure out the changes in this variable over a brief
time and continues to compute approximations of the
solutions until the end of the desired solution interval.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 50
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Differential equations along with a specified
value of the unknown function at a given point in the
domain of the solution are an Initial Value Problem.
This specified value is the initial condition. In many
important cases of differential equations, analytic
solutions are difficult or impossible to obtain and time
consuming. Eric, (2013). Although numerical
solutions are approximations, the error of
approximation is often acceptable and numerical
solutions give birth to algorithms that are used to
design computer simulated solutions.

A major development in the study of numerical
methods is the introduction of modern computers for
the calculation of functions in the mid 20th century.
Wikipedia, (2014). Until this time, numerical methods
often depended on hand interpolation in large printed
tables. These tables contained data such as
interpolation points and function coefficients up to 16
decimal places or more and were used to obtain very
good numerical estimates of functions. Although
these same algorithms continue to be part of the base
of software algorithms for obtaining numerical
solutions, the way computer represents and processes
numbers gives rise to inexact results from the
programs. Inexactness arises for different reasons like
the number of decimal places in which results are
retrieved and the number of steps required to the final
solution, nevertheless, the use of computers and
computer applications in numerical methods has
become an established part of general numerical
analysis with the development of many numerical
computing applications such as MATLAB, S-PLUS,
LabView, FreeMat, Scilab, GNU Octave and their
associated speed and performance in obtaining
solutions.

2. OVERVIEW OF MATLAB

MATLAB which stands for Matrix Laboratory is
a high-level language and interactive computer
environment developed by MathWorks for numerical
computation, visualization, and programming. Using
MATLAB, you can analyze data, develop algorithms,
and create models and applications. The language,
tools, and built-in math functions enable you to
explore multiple approaches and reach a solution
faster than with spreadsheets or traditional
programming languages, such as C/C++ or Java.

You can use MATLAB for a range of
applications, including signal processing and
communications, image and video processing, control
systems, test and measurement, computational
finance, and computational biology. More than a
million engineers and scientists in industry and

academia use MATLAB, the language of technical
computing.

3. STIFFNESS OF ORDINARY DIFFERENTIAL
EQUATIONS

Stiff ordinary differential equations arise
frequently in the study of chemical kinetics, electrical
circuits, vibrations, control systems and so on. It is a
difficult and important concept in the study of
differential equations. Stiffness has no generally
accepted definition but several attempts had been
made at defining the concept. Some of the definitions
are:

1. A stiff problem is one for which no solution
component is unstable (no eigenvalue of the
Jacobian matrix has a real part which is at all
large and positive) and at least some component
is very stable (at least one eigenvalue has a real
part which is large and negative.

2. A problem is stiff if the solution being sought
varies slowly but there are nearby solutions that
vary rapidly, so the numerical method must take
small steps to obtain satisfactory results.

3. Stiffness occurs when some components decay
more rapidly than others.

4. The linear system of differential equations

𝑑𝑢
𝑑𝑡

= 𝑨𝑢(𝑡) 𝑡 ∈ [0,𝑇]

𝑢(0) = 𝑢0

is stiff when the eigenvalues 𝜆𝑘 (𝑘 = 1,2, … ,𝑚) of
the constant coefficient matrix 𝑨 of the system have
the following properties:

5. Re𝜆𝑘 < 0 for each 𝑘 = 1,2, … ,𝑚 (all its eigenvalues
have negative real parts.

The number, 𝑆 defined as, 𝑆 = 𝑚𝑎𝑥𝑘|𝑅𝑒𝜆𝑘|
𝑚𝑖𝑛𝑘|𝑅𝑒𝜆𝑘| is large, i.e.

𝑆 ≫ 1. 𝑆 is called the stiffness number.

6. A problem is stiff if explicit methods fail to provide
solutions or works extremely slowly.

According to Shampine and Thompson as
reported in Aliyu et al (2014), the best way to detect
stiffness is to try one of the solvers intended for non-
stiff systems. If it is unsatisfactory, then the problem
may be stiff and effective stiff solvers should be
employed. We shall employ this method of detecting
stiffness in this work.

The objective of this work is to present how
MATLAB solvers are applied in providing numerical
solutions for initial value problems of ordinary
differential equations.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 51
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

4. MATLAB ODE SOLVERS

There are several inbuilt solvers for differential
equations in MATLAB. Eight (8) of these solvers are
applicable for initial value ODE problems. They are:
ode45, ode23, ode113, ode15s, ode23s, ode23t,
ode23tb, ode15i. These ODE solvers are designed to
handle three types of first order ODEs:

1. Explicit ODEs of the form 𝑦 ′ = 𝑓(𝑡, 𝑦)
2. Linearly implicit ODEs of the form 𝑴(𝑡, 𝑦).𝑦 ′ =

𝑓(𝑡,𝑦), where 𝑴(𝑡,𝑦) is a matrix.
3. Fully implicit ODEs of the form 𝑓(𝑡, 𝑦,𝑦 ′) = 0

In this work, we shall consider explicit ODEs only.

Initial value problems are categorized as stiff and
non-stiff, Shampine, et al (2003) and this
classification is important in selecting the solvers to
use in MATLAB. Stiffness is a subtle, complicated
and important concept in numerical solutions of
ordinary differential equations. A problem is stiff if
the solution being sought varies slowly, but there are
nearby solutions that vary rapidly and so the
numerical method must take small steps to obtain
satisfactory results. Stiffness also forms a basis for the
classification of ODE solvers in MATLAB. Some
solvers are designed for stiff problems and some
others for non-stiff problems. Stiffness is an
efficiency issue. If non-stiff methods are used to solve
stiff IVPs, the solver will either take an extremely
long time to supply a solution or supply an inaccurate
solution or fail to supply any solution at all. All stiff
problems are difficult for solvers that are not designed
for them and this is why it is necessary to select an
appropriate solver when using MATLAB ODE
solvers. MATLAB documentation recommends that
ode45 is the best solver to give the first try for most
problems. If ode45 is slow in solving the problem or
failed to solve the problem, then stiffness is suspected
and you can then go ahead to try ode15s.

Ode45

ode45 is a sophisticated built-in MATLAB
function that gives very accurate solutions. Ode45 is
based on a simultaneous implementation of an explicit
fourth and fifth order Runge-Kutta formula called the
Dormand-Prince pair. It is a one-step solver. This is
the first solver to be tried for most problems. It is
designed for non-stiff problems. Ode45 can use long
step size and so the default is to compute solution
values at four points equally spaced within the span of
each natural step.

The Dormand-Prince pair is an explicit method and a
member of the Runge-Kutta family of solvers. The
method employs function evaluations to calculate

fourth and fifth order accurate solutions. The
difference between these solutions is then taken to be
the error of the fourth order solution.

Ode23

This solver is designed for solving non-stiff
problems. It’s method is based on the 2nd and 3rd
Order Runge-Kutta pair called the Bogacki-Shampine
method. Ode23 is less expensive than ode45 in that it
requires less computation steps than ode45. But it is
of a lower order, although it may be more efficient at
crude tolerances and in the presence of mild stiffness.
Ode23 is a one-step solver.

The Bogacki-Shampine method is a Runge-Kutta
method of order 3 with four stages proposed by
Przemyslaw Bogacki and Lawrence F. Shampine in
1989. It uses three function evaluations per step. It has
embedded second order method which is used to
implement adaptive step size for the method.
Ode113

Ode113 is a multi-step variable order method
which uses Adams–Bashforth–Moulton predictor-
correctors of order 1 to 13. It may be more efficient
than ode45 at stringent tolerances and when the ODE
problem is particularly expensive to evaluate. It is
designed for non-stiff problems.

Ode 15s

Ode15s a variable order solver whose algorithm
is based on the numerical differentiation formulas
(NDFs) and optionally along with the backward
differentiation formulas (BDFs) which is also called
Gear’s method. This is a multi-step solver that is
designed for stiff problems. This is the next
recommended solver if ode45 fails or is too slow.

 The Backward Differentiation Formula is a
family of implicit methods for the numerical
integration of ordinary differential equations. They
are linear multi-step methods and for a given function
and time, they approximate the derivative of that
function using information from already computed
times. BDF methods are implicit and, as such, require
the solution of nonlinear equations at each step.

Ode23s

This is based on a modified Rosenbrock formula
of order 3 and 2 with error control designed for stiff
systems. It advances from 𝑦𝑛 to 𝑦𝑛+1 with the second
order method and controls the local error by taking
the difference between the third and second order
numerical solutions. This is a one step method and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 52
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

can solve some kinds of stiff problems for which
ode15s is not effective.

Ode23t

The algorithm implemented in this solver is the
trapezoidal rule along with a free interpolant. This
solver is designed for only moderately stiff problems
and when the solution required should be without
damping.

Ode23tb

Is an implementation of TR-Backward
Differentiation Formula 2. This is an implicit Runge-
Kutta formula with a first stage that is a trapezoidal
rule step and a second stage that is a backward
differentiation formula of order 2. This method may

be used when crude error tolerance is required to
solve stiff systems.

Ode15i

This solver is designed based on a variable order
method for fully implicit differential equations. This
is the only solver that is designed for fully implicit
differential equations.

A Summary of MATLAB ODE Solvers

Solver Kind of Problem Base Algorithm
Ode45 Non-stiff differential equations Runge-Kutta
Ode23 Non-stiff differential equations Runge-Kutta
Ode113 Non-stiff differential equations Adams-Bashfort-Moulton
Ode15s Stiff differential equations Numerical Differentiation

Formulas (Backward
Differentiation Formulas)

Ode23s Stiff differential equations Rosenbrock
Ode23t Moderately stiff differential

equations
Trapezoidal Rule

Ode23tb Stiff differential equations TR-BDF2
Ode15i Fully implicit differential equations BDFs

5. MATLAB ODE SOLVER SYNTAX

Apart from the ode15i solver, all other ODE
solvers in MATLAB have the same syntax. This
makes it easy to apply different methods to the same
problem. The basic syntax for all the solvers is

[𝑡, 𝑦] = 𝑠𝑜𝑙𝑣𝑒𝑟(𝑓, 𝑡𝑠𝑝𝑎𝑛, 𝑦0,𝑜𝑝𝑡𝑖𝑜𝑛𝑠)

Where 𝑠𝑜𝑙𝑣𝑒𝑟 is the ode solver method, e.g. ode45,
ode23 and others.

The output arguments are:

𝒕 Column vector of time points
𝒚 Solution array

The input arguments are:

6. Optional Parameters.

The default integration properties for the ODE
solvers are selected to handle common problems. It is

possible to use optional parameters to improve ODE
solvers performance. This will override the default
integration properties of the solver.

The optional properties that can be set are in
several categories. Some of them are Error Control
Properties, Solver Output Properties, Step-Size
Properties, Event Location Property, Jacobian Matrix
Properties.

On the error control properties, each MATLAB
ODE solver is designed in a manner that the estimated
local error in each component of the solution satisfies
a given error test. For a single equation the estimated
local error in passing from 𝑦(𝑡𝑛) to 𝑦(𝑡𝑛+1), call it
𝑒(𝑡𝑛), is to satisfy |𝑒(𝑡𝑛)| ≤ 𝑚𝑎𝑥{𝐴𝑏𝑠𝑇𝑜𝑙,𝑅𝑒𝑙𝑇𝑜𝑙 ·
|𝑦(𝑡𝑛)|}. The error tolerances 𝐴𝑏𝑠𝑇𝑜𝑙 and 𝑅𝑒𝑙𝑇𝑜𝑙 can
be specified by running the MATLAB program
𝑜𝑑𝑒𝑠𝑒𝑡; when left unspecified, the default tolerances
are 𝐴𝑏𝑠𝑇𝑜𝑙 = 10−6, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−3 .

The step size properties specify the size of the
first step the solver should use and the upper bound
on the step size that the solver can use. The property
that specifies the initial step size is called 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑒𝑝

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 53
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

and the property that specifies the upper bound on
solver step size is called 𝑀𝑎𝑥𝑆𝑡𝑒𝑝. To set optional
parameter properties, we use the 𝑜𝑑𝑒𝑠𝑒𝑡 function and
the syntax is as shown below:

𝑜𝑝𝑡𝑖𝑜𝑛𝑠
= 𝑜𝑑𝑒𝑠𝑒𝑡(‘𝑛𝑎𝑚𝑒1’, 𝑣𝑎𝑙𝑢𝑒1, ‘𝑛𝑎𝑚𝑒2’, 𝑣𝑎𝑙𝑢𝑒 2, …)

‘name1’ refers to the property name that has the
specified value ‘value1’. Any property that is
unspecified retains its default value.

For example, to set the initial step size, we have

𝑜𝑝𝑡𝑖𝑜𝑛𝑠 = 𝑜𝑑𝑒𝑠𝑒𝑡(′𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑒𝑝′, 0.0001)

7. PROCEDURE FOR SOLVING FIRST ORDER
ODEs USING MATLAB SOLVERS

1. Code the Problem
In this step, you develop an m-file to contain the
given function. For the general problem of the form
𝑦 ′ = 𝑓(𝑡,𝑦), the code will look like this:
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝1(𝑡,𝑦)
𝑑𝑦𝑑𝑡 = 𝑓(𝑡, 𝑦);
𝑒𝑛𝑑

For example, consider the problem, 𝑦 ′ = 2𝑡 + 1, the
code for the problem is:
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝1(𝑡,𝑦)
𝑑𝑦𝑑𝑡 = 2 ∗ 𝑡 + 1;
𝑒𝑛𝑑
The names 𝑑𝑦𝑑𝑡 𝑎𝑛𝑑 𝑝1 in the code above do not
play any role in the definition of the function. Any
name can be used as long as they conform with
MATLAB naming rules for functions and m-files.

2. Apply a Solver to the Problem
Make a decision of the solver you intend to use. Then
call the solver using the syntax in Section 3.4.1 and
pass the function, the time interval you desire for your
solution and the initial condition vector to it. For
example, to apply ode45 solver to the problem
described by 𝑝1 in step 1 above on the time interval
between 0 and 10, with initial condition 𝑦(0) = 0, the
following code is typed into the command window:
𝑡𝑠𝑝𝑎𝑛 = [0, 10];
𝑦0 = 0
[𝑡, 𝑦] = 𝑜𝑑𝑒45(@𝑝1, 𝑡𝑠𝑝𝑎𝑛, 𝑦0)

3. Retrieve the Solver Output

You can simply use the 𝑝𝑙𝑜𝑡 command to view the
solver output. i.e. 𝑝𝑙𝑜𝑡(𝑡,𝑦)

You can also display the results by using the
𝑑𝑖𝑠𝑝 command i.e. 𝑑𝑖𝑠𝑝([𝑡, 𝑦])

Phase portrait of the solution can also be retrieved.

PROCEDURE FOR SOLVING HIGHER ORDER
ODEs USING MATLAB SOLVERS

1. Rewrite the second order ODE as a system of first
order ODEs.
For the nth-order ODE: 𝑦(𝑛) = 𝑓�𝑡,𝑦,𝑦′, … , 𝑦(𝑛−1)�
Set 𝑦1 = 𝑦, 𝑦2 = 𝑦′, … , 𝑦𝑛 = 𝑦(𝑛−1)
The result of this substitution will be an equivalent
system of 𝑛 first order ODEs

𝑦1′ = 𝑦2
𝑦2′ = 𝑦3

⋮
𝑦𝑛′ = 𝑓(𝑡, 𝑦1,𝑦2, … , 𝑦𝑛)

For example, consider the second order ODE
𝑦′′ = 𝑓(𝑡, 𝑦, 𝑦′)
Set, 𝑦1 = 𝑦 and 𝑦2 = 𝑦′
This implies that, 𝑦1′ = 𝑦′ = 𝑦2 and 𝑦2′ = 𝑦′′ =
𝑓(𝑡,𝑦1,𝑦2)
So, we obtain the system of first order ODEs,

𝑦1′ = 𝑦2
𝑦2′ = 𝑓(𝑡, 𝑦1,𝑦2)

2. Code the system of First Order ODEs.

Develop an m-file containing the system of first order
ODEs obtained from splitting the higher order ODE
in question. For the general second order ODE in step
1 above, the code will look like this:
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝2(𝑡,𝑦)
𝑑𝑦𝑑𝑡(1) = 𝑦(2);
𝑑𝑦𝑑𝑡(2) = 𝑓(𝑡,𝑦1,𝑦2);
𝑑𝑦𝑑𝑡 = [𝑑𝑦𝑑𝑡(1); 𝑑𝑦𝑑𝑡(2)];
𝑒𝑛𝑑

3. Apply a Solver to the Problem.
You use the solver syntax to call the solver you want
to use as in the case of the first order ODE.

4. Retrieve the Solver Output
You can simply use the 𝑝𝑙𝑜𝑡 command to view the
solver output. i.e. 𝑝𝑙𝑜𝑡(𝑡,𝑦)

You can also display the results by using the
𝑑𝑖𝑠𝑝 command i.e. 𝑑𝑖𝑠𝑝([𝑡, 𝑦])

Phase portrait of the solution can also be retrieved.

APPLICATION OF MATLAB ODE SOLVERS
TO NON-STIFF INITIAL VALUE PROBLEMS
OF ODEs.

In this section, we apply the relevant solvers to
three non-stiff problems (Problems 1, 2 and 3) and
three stiff problems (Problems 4, 5 and 6). Solution
graphs and Phase Portraits of the systems are also
presented.

Problem 1:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 54
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The state variable equations of a continuous system
describing the dynamic behaviour of the system is
given by

𝑦1′ = 5𝑦2

𝑦2′ = −5𝑦1 − 5𝑦2 + 5

𝑦1(0) = 𝑦2(0) = 0

Develop a MATLAB program that plots 𝑦1 𝑎𝑛𝑑 𝑦2 on
the same graph for 𝑡 = 0 𝑡𝑜 10. obtain the phase
portrait of the system.

Source: Exercises from Ogbonnaya (2008)

Solution: Using ode45 to solve the problem:

Phase Portrait of the System

Problem 2.

Lotka-Volterra Equations

The populations of two species, a prey denoted by 𝑦1
and predator denoted by 𝑦2, can be modeled by a
system of ODEs:

𝑦1′ = 𝑏𝑦1 – 𝑐𝑦1𝑦2

𝑦2’ = −𝑑𝑦2 + 𝑐𝑦1𝑦2

due to Lotka and Volterra.

The parameters 𝑏 and 𝑑 govern the birth rate of prey
and death rate of predators, respectively, and the
parameter 𝑐 governs the interaction of the two
populations. With the parameter values 𝑏 = 1,𝑑 =
 10, and 𝑐 = 1, and initial conditions 𝑦1(0) = 0.5
and 𝑦2(0) = 1

(the populations are normalized, and we treat them as
continuous variables), use MATLAB function ode45
to solve this system numerically, integrating to
𝑡 = 10. Plot each of the two populations as a
function of time, and on a separate graph plot the
trajectory of the point (𝑦1(𝑡),𝑦2(𝑡)) in the plane.

Source: Heath (1997)

Solution:

Our system of ODEs now become

𝑦1′ = 𝑦1 – 𝑦1𝑦2

𝑦2’ = −10𝑦2 + 𝑦1𝑦2

𝑦1(0) = 0.5 , 𝑦2(0) = 1

Implementing ode45 for the problem:

Phase Portrait of the System

Problem 3:

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

y

PLOT OF y1 AND y2 AGAINST t

y1
y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y1

y2

GRAPH OF y2 AGAINST y1

0 2 4 6 8 10
-5

0

5

10

15

20

25

30

35

40

45

t

y

PLOT OF PREY AND PREDATOR POPULATION AGAINST t

Prey
Predator

0 5 10 15 20 25 30 35 40 45
-5

0

5

10

15

20

25

Prey

Pr
ed

ato
r

PLOT OF PREDATOR POPULATION AGAINST PREY POPULATION

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 55
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Lorentz Equations

The Lorentz equations are used to simulate the
convection of a layer of fluid of infinite horizontal
extent heated from below. The model is a simplified
version of the heating of the atmosphere. The
equations are obtained by expanding the terms for
temperature and pressure involved in the problem
with their Fourier series expansion and simplifying
the expansion to the first three modes represented by
the variables x, y, and z. The resulting system of
equations is

𝑑𝑥
𝑑𝑡

 = 𝜎 (−𝑥 + 𝑦)

𝑑𝑦
𝑑𝑡

 = 𝑟𝑥 − 𝑦 − 𝑥𝑧

𝑑𝑧
𝑑𝑡

 = 𝑥𝑦 − 𝑏𝑧

where

𝜎 , 𝑟, and 𝑏 are constants that result from combining
physical parameters of the problem. Solve the Lorentz
equations for the following combination of
parameters:

𝜎 = 10, 𝑟 = 75,𝑏 = 2.666,𝑥(0) = 1,𝑦(0)
= 1, 𝑧(0) = 1

Plot the signals 𝑥 − 𝑣𝑠 − 𝑡,𝑦 − 𝑣𝑠 − 𝑡, 𝑧 − 𝑣𝑠 − 𝑡, as
well as the phase portraits 𝑥 − 𝑣𝑠 − 𝑦,𝑥 − 𝑣𝑠 − 𝑧,
and 𝑦 − 𝑣𝑠 − 𝑧.

Source: Gilberto (2004)

Solution:

Our system of ODEs now become:

𝑑𝑥
𝑑𝑡

 = 10(−𝑥 + 𝑦)

𝑑𝑦
𝑑𝑡

 = 75𝑥 − 𝑦 − 𝑥𝑧

𝑑𝑧
𝑑𝑡

 = 𝑥𝑦 – 2.666𝑧

𝑥(0) = 1, 𝑦(0) = 1, 𝑧(0) = 1

Solving the problem using ode45:

Phase Portraits of the System

Comparison of ode45, ode23 and ode113 for Problems 1, 2, and 3

Problem 1

Solver Elapsed Time (s) Successful Steps Failed
Attempts

Function
Evaluation

Ode45 0.020157 40 6 277
Ode23 0.540800 87 9 289
Ode113 0.489211 90 5 186

Problem 2 Ode45 0.033996 76 8 505
Ode23 Failed
Ode113 Failed

Problem 3 Ode45 0.025690 49 8 343
Ode23 0.035048 145 14 478
Ode113 0.054591 140 10 291

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-60

-40

-20

0

20

40

60

80

100

120

140

t

y

PLOT OF x, y, z AGAINST t

x
y
z

-30 -20 -10 0 10 20 30 40
-50

0

50

100

x

y

-30 -20 -10 0 10 20 30 40
0

50

100

150

x

z

-60 -40 -20 0 20 40 60 80
0

50

100

150

y

z

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 56
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

APPLICATION OF MATLAB ODE SOLVERS
TO STIFF INITIAL VALUE PROBLEMS OF
ODEs.

Problem 4.

Van der Pol System

The Van der Pol system is a non-linear oscillator.
This is a classical stiff problem in the field of
electrical engineering and was first reported in 1927
by Balthazar Van der Pol and his colleague Van der
Mark. The mathematical representation of the system
is:

𝑦1′ = 𝑦2

𝑦2′ = 𝛼(1− 𝑦12)𝑦2 − 𝑦1

The stiffness can be controlled by changing the
parameter 𝛼. 𝛼 = 1000 will result in a stiff case. We
shall solve the system with the initial conditions
𝑦1(0) = 2 and 𝑦2(0) = 0 on the interval 0 to 3000.

Source: Yihai (2000)

Solution

Our system of ODEs now become:

𝑦1′ = 𝑦2

𝑦2′ = 1000(1− 𝑦12)𝑦2 − 𝑦1

𝑦1(0) = 2, 𝑦2(0) = 0

Solving with ode15s:

Phase Portrait of the System

Problem 5:

The Robertson’s Problem

Consider the system below on the interval 0 ≤ 𝑡 ≤
5000

𝑦1′ = −.04𝑦1 + 104𝑦2𝑦3

𝑦2′ = .04𝑦1 − 104𝑦2𝑦3 − 3.107𝑦22

𝑦3′ = 3.107𝑦22

𝑦1(0) = 1,𝑦2(0) = 0, 𝑦3(0) = 0

Solution:

Solving with ode15s:

Phase Portraits of the System

0 500 1000 1500 2000 2500 3000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

y

PLOT OF VAN DER POL SYSTEM

y1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1500

-1000

-500

0

500

1000

1500

y2

y1

Phase Plot for Van der Pol System

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PLOT OF y1, y2 and y3 AGAINST t

t

y

y1
y2
y3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 57
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Problem 6

Consider the system of stiff differential equations on
the interval 0 ≤ 𝑡 ≤ 20

𝑦1
; = 998𝑦1 + 1998𝑦2

𝑦2′ = −999𝑦1 − 1999𝑦2

𝑦1(0) = 1, 𝑦2(0) = 0

Solution: Solving with ode15s

Phase Portrait of the Solution

Comparison of ode15s, ode23s and ode23t for Problems 4, 5, and 6

Problem
4

Solver Elapsed
Time (s)

Successful
Steps

Failed
Attempts

Functions
Evaluated

Linear
Systems
Solved

Ode15s 0.424216 591 225 1883 1747
Ode23s 0.549822 743 17 3751 2280
Ode23t 0.520989 776 94 2121 2012

Problem
5

Ode15s 0.067788 107 11 261 227
Ode23s 0.705399 93 2 565 285
Ode23t 0.520620 99 8 284 250

Problem
6

Ode15s 0.049062 90 1 153 149
Ode23s 0.053143 68 0 342 204
Ode23t 0.066586 108 0 206 202

 CONCLUSION

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

1

2

3
x 10

-3

y1

y2

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.05

0.1

y1

y3

0 0.5 1 1.5 2 2.5 3

x 10
-3

0

0.05

0.1

y2

y3

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

1.5

2

t

y

PLOT OF y1 and y2 AGAINST t

y1
y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

y2

y1

PLOT OF y1 AGAINST y2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 58
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The use of MATLAB is very effective in proffering
numerical solution to initial value problems of
ordinary differential equations as seen in this work.
Calculations that could run through pages and days
are obtained in a matter of seconds. Accuracy is also
maintained. Further studies on the use of optional
parameters to enhance performance of solvers is
recommended.

REFERENCES

Aliyu B. K., Osheku C. A., Funmilayo A. A. and
Musa J.I. (2014) Identifying Stiff Ordinary
Differential Equations and Problem Solving
Environments (PSEs). Journal of Scientific Research
& Reports. 3(11): 1430 - 1448

Bilokon P., Amen S., Brinley Codd A., Fofaria M.,
Shah T. (2004). Numerical Solutions of Differential
Equations. Retrieved March 3, 2014 from
www.oc.ic.ac.uk/~pb401/DE/archive/report/report.pdf

Butcher J.C. (2000) Numerical Methods for Ordinary
Differential Equations in the 20th Century. Journal of
Computational and Applied Mathematics 125:1-29

Coddington Earl A. and Levinson Norman (1955)
Theory of Ordinary Differential Equation. (London,
McGraw-Hill Book Company, Inc.)

David Houcque. (2014). Applications of MATLAB:
Ordinary Differential Equations (ODE). Retrieved
March 30, 2014 from
www.math.unipd.it/~alvise/CS_2008/ODE/MFILES/
ode.pdf

Didier Gonze. (2013). Numerical Methods for
Ordinary Differential Equations. Retrieved March 10,
2014 from
http://homepages.ulb.ac.be/~dgonze/TEACHING/nu
merics.pdf

Gilberto E. Urroz. (2004). Examples of Initial-Value
ODE Problems. Retrieved April 5, 2014 from
ocw.usu.edu/Civil_and_Environmental_Engineering/
Numerical_Methods_in_Civil
_Engineering/ODEsExamples.pdf

James Blanchard. (1998). Ordinary Differential
Equations: Initial Value Problems. Retrieved March
19, 2014 from
http://homepages.cae.wisc.edu/~blanchar/eps/ivp/ivp.
html

Kendall Atkinson, Weimin Han, David Stewart
(2009) Numerical Solutions of Ordinary Differential
Equations. (New Jersey, John Wiley & Sons, Inc.)

Shampine L. F., Gladwell I., Thompson S. (2003)
Solving ODEs in MATLAB. (New York, Cambridge
University Press)

Marcel B. Finan. (2012). A first Course in Elementary
Differential Equations. Retrieved March 30, 2014
from
www.math.umass.edu/~gardner/m331/diffq1book.pdf

Mathworks. (2014). MATLAB, The Language of
Technical Computing. Retrieved April 3, 2014 from
http://www.mathworks.com/products/matlab/index.ht
ml?sec=applications

Ogbonnaya, I. O. (2008) Introduction to
MATLAB/SIMULUNK for Engineers and Scientists.
(Enugu, John Jacob’s Classic Publishers Ltd.)

Ogunride R. Bosede, Fadugba S. Emmanuel,
Okunlola J. Temitayo (2012) On Some Numerical
Methods For Solving Initial Value Problems In
Ordinary Differential Equations. IOSR Journal of
Mathematics. 1(3):25-31

Paul’s Online Math Notes. (2014). Differential
Equations-Notes. Retrieved March 13, 2014 from
tutorial.math.lamar.edu/Classes/DE/Definitions.aspx

Yihai Yu. (2000) Stiff Problems in Numerical
Simulation of Biochemical and Gene Regulatory
Networks. Retrieved April 5, 2014

From
www.getd.libs.uga.edu/pdfs/yu_yihai_200408_ms.pdf

Robert E. Terrell (2014). Lecture Note on Differential
Equations. Retrieved March 9, 2014 from
http://www.math.cornell.edu/~bterrell/dn.pdf

Ryuichi Ashino, Michihiro Nagae and Remi
Vaillancourt (2000) Behind and Beyond MATLAB
ODE Suite. Computers and Mathematics with
Applications. 40:491-512

Sharaban Thohura & Azad Rahman (2013)
Numerical Approach for Solving Stiff Differential
Equations: A Comparative Study. Global Journal of
Science Frontier Research Mathematics and Decision
Sciences. 13(6): 6 - 18

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 59
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Steven T. Karris (2007) Numerical Analysis Using
MATLAB and Excel (California: Orchard
Publications)

Toshinori Kimura. (2009). On Dormand-Prince
Method. Retrieved April 27, 2014 from
http://depa.fquim.unam.mx/amyd/archivero/
DormandPrince_19856.pdf

Wikibooks. (2014). MATLAB Programming.
Retrieved April 3, 2014 from
http://en.wikiboos.org/wiki/MATLAB_Programming

Wikipedia. (2014). Bogacki Shampine Method.
Retrieved April 27, 2014 from
http://en.wikipedia.org/w/index.php?title=Bogacki-
Shampine_method

Wikipedia. (2014). Differential Equation. Retrieved
February 20, 2014 from
http://en.wikipedia.org/wiki/Differential_equation

Wikipedia.(2014). Initial Value Problem. Retrieved
February 20, 2014 from
http://en.wikipedia.org/wiki/Initial_Value_Problem

IJSER

http://www.ijser.org/

