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Abstract - Many important and complex systems from different fields of sciences are modeled using differential equations. Due to 
the complexity of these systems, analytical methods are often difficult or impossible to implement for such problems and so 
numerical methods are the way out. The advent of computer applications like MATLAB starting from the mid 20th century has 
made a drastic improvement in numerical solutions for differential equations. In this work, we present the solvers in MATLAB for 
obtaining numerical solution for initial value problems of ODEs – ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb. Six 
problems are solved, three of which are stiff and three non-stiff using the relevant MATLAB solvers and the solutions are 
presented. 

Index Terms – Advent of computer application, Analytic approach, Differential equation, Dynamic, Matlab, Matrix laboratory, Non-
Stiff, Stiff,  
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1. INTRODUCTION 

The dynamic behavior of systems is an 
interesting and important subject of study for 
scientists, Marcel B. Finan. (2012). Mechanical 
systems involve time related change in position and 
speed, electric systems involve change in current and 
voltage with time as well as several other systems 
from fields like engineering, economics, social 
sciences, biology, business and so on. These systems 
involving change are represented mathematically 
using differential equations. Differential equations are 
equations involving the derivatives of a dependent 
variable with respect to one or two independent 
variables. 

Differential equations can be classified as 
ordinary or partial. A differential equation is ordinary 
if the unknown function is dependent only on a single 
variable. If the unknown function is dependent on 
multiple independent variables and the equation 
involves its partial derivatives, then the equation is a 
partial differential equation. Marcel, (2012). 

Differential equations are also classified 
according to their order. The order of a differential 
equation is the highest derivative in the equation. A 
differential equation that has the second derivative as 
the highest derivative is said to be of order 2. The 
highest power of the highest derivative in a 
differential equation is the degree of the equation. 

In physics, Newton’s Second Law, Navier Stokes 
Equations, Cauchy-Riemman Equations, Schrodinger 

Equations are all well known differential equations. 
The Lotka-Voltera Equations, Verhulst Equations and 
Replicator dynamics in biology as well as the 
exogenous growth model and Malthusian growth 
model in Economics are all represented by differential 
equations.  

The solution of a differential equation is a value 
of the dependent variable in the equation that satisfies 
the equation at all points of the solution domain. The 
solution of a differential equation at a point is the 
value of the dependent variable at that point.  
Solutions to differential equations can be categorized 
in three broad sections. The analytic approach of 
solution, the qualitative approach and the numerical 
approach.  

The analytic approach seeks to provide an 
explicit solution to the differential equation. Many 
important equations are impossible to solve using this 
method. The qualitative approach does not provide 
explicit solutions; rather it uses geometry to provide 
an overview of the behavior of the model. The 
qualitative approach yields solutions in form of 
direction fields, solution curves and phase plots. This 
method may be used to validate an analytic or 
numeric result. The numerical method provides 
approximate values of the solutions to the differential 
equation. The numerical method starts with an initial 
value of the variable and then uses the equations to 
figure out the changes in this variable over a brief 
time and continues to compute approximations of the 
solutions until the end of the desired solution interval. 
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Differential equations along with a specified 
value of the unknown function at a given point in the 
domain of the solution are an Initial Value Problem. 
This specified value is the initial condition. In many 
important cases of differential equations, analytic 
solutions are difficult or impossible to obtain and time 
consuming. Eric, (2013). Although numerical 
solutions are approximations, the error of 
approximation is often acceptable and numerical 
solutions give birth to algorithms that are used to 
design computer simulated solutions. 

A major development in the study of numerical 
methods is the introduction of modern computers for 
the calculation of functions in the mid 20th century. 
Wikipedia, (2014). Until this time, numerical methods 
often depended on hand interpolation in large printed 
tables. These tables contained data such as 
interpolation points and function coefficients up to 16 
decimal places or more and were used to obtain very 
good numerical estimates of functions. Although 
these same algorithms continue to be part of the base 
of software algorithms for obtaining numerical 
solutions, the way computer represents and processes 
numbers gives rise to inexact results from the 
programs. Inexactness arises for different reasons like 
the number of decimal places in which results are 
retrieved and the number of steps required to the final 
solution, nevertheless, the use of computers and 
computer applications in numerical methods has 
become an established part of general numerical 
analysis with the development of many numerical 
computing applications such as MATLAB, S-PLUS, 
LabView, FreeMat, Scilab, GNU Octave and their 
associated speed and performance in obtaining 
solutions. 

2. OVERVIEW OF MATLAB 

MATLAB which stands for Matrix Laboratory is 
a high-level language and interactive computer 
environment developed by MathWorks for numerical 
computation, visualization, and programming. Using 
MATLAB, you can analyze data, develop algorithms, 
and create models and applications. The language, 
tools, and built-in math functions enable you to 
explore multiple approaches and reach a solution 
faster than with spreadsheets or traditional 
programming languages, such as C/C++ or Java. 

You can use MATLAB for a range of 
applications, including signal processing and 
communications, image and video processing, control 
systems, test and measurement, computational 
finance, and computational biology. More than a 
million engineers and scientists in industry and 

academia use MATLAB, the language of technical 
computing. 

3. STIFFNESS OF ORDINARY DIFFERENTIAL 
EQUATIONS 

Stiff ordinary differential equations arise 
frequently in the study of chemical kinetics, electrical 
circuits, vibrations, control systems and so on. It is a 
difficult and important concept in the study of 
differential equations. Stiffness has no generally 
accepted definition but several attempts had been 
made at defining the concept. Some of the definitions 
are: 

1. A stiff problem is one for which no solution 
component is unstable (no eigenvalue of the 
Jacobian matrix has a real part which is at all 
large and positive) and at least some component 
is very stable (at least one eigenvalue has a real 
part which is large and negative. 

2. A problem is stiff if the solution being sought 
varies slowly but there are nearby solutions that 
vary rapidly, so the numerical method must take 
small steps to obtain satisfactory results. 

3. Stiffness occurs when some components decay 
more rapidly than others. 

4. The linear system of differential equations  

𝑑𝑢
𝑑𝑡

= 𝑨𝑢(𝑡) 𝑡 ∈ [0,𝑇] 

𝑢(0) = 𝑢0 

is stiff when the eigenvalues 𝜆𝑘  (𝑘 = 1,2, … ,𝑚) of 
the constant coefficient matrix 𝑨 of the system have 
the following properties: 

5. Re𝜆𝑘 < 0 for each 𝑘 = 1,2, … ,𝑚 (all its eigenvalues 
have negative real parts. 

The number, 𝑆 defined as, 𝑆 = 𝑚𝑎𝑥𝑘|𝑅𝑒𝜆𝑘|
𝑚𝑖𝑛𝑘|𝑅𝑒𝜆𝑘| is large, i.e. 

𝑆 ≫ 1. 𝑆 is called the stiffness number. 

6. A problem is stiff if explicit methods fail to provide 
solutions or works extremely slowly. 

According to Shampine  and Thompson as 
reported in Aliyu et al (2014), the best way to detect 
stiffness is to try one of the solvers intended for non-
stiff systems. If it is unsatisfactory, then the problem 
may be stiff and effective stiff solvers should be 
employed. We shall employ this method of detecting 
stiffness in this work. 

The objective of this work is to present how 
MATLAB solvers are applied in providing numerical 
solutions for initial value problems of ordinary 
differential equations. 
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4. MATLAB ODE SOLVERS 

There are several inbuilt solvers for differential 
equations in MATLAB. Eight (8) of these solvers are 
applicable for initial value ODE problems. They are: 
ode45, ode23, ode113, ode15s, ode23s, ode23t, 
ode23tb, ode15i. These ODE solvers are designed to 
handle three types of first order ODEs: 

1. Explicit  ODEs of the form 𝑦 ′ = 𝑓(𝑡, 𝑦) 
2. Linearly implicit ODEs of the form 𝑴(𝑡, 𝑦).𝑦 ′ =

𝑓(𝑡,𝑦),  where 𝑴(𝑡,𝑦) is a matrix. 
3. Fully implicit ODEs of the form 𝑓(𝑡, 𝑦,𝑦 ′) = 0 

In this work, we shall consider explicit ODEs only. 

Initial value problems are categorized as stiff and 
non-stiff, Shampine, et al (2003) and this 
classification is important in selecting the solvers to 
use in MATLAB. Stiffness is a subtle, complicated 
and important concept in numerical solutions of 
ordinary differential equations.  A problem is stiff if 
the solution being sought varies slowly, but there are 
nearby solutions that vary rapidly and so the 
numerical method must take small steps to obtain 
satisfactory results. Stiffness also forms a basis for the 
classification of ODE solvers in MATLAB. Some 
solvers are designed for stiff problems and some 
others for non-stiff problems. Stiffness is an 
efficiency issue. If non-stiff methods are used to solve 
stiff IVPs, the solver will either take an extremely 
long time to supply a solution or supply an inaccurate 
solution or fail to supply any solution at all.  All stiff 
problems are difficult for solvers that are not designed 
for them and this is why it is necessary to select an 
appropriate solver when using MATLAB ODE 
solvers. MATLAB documentation recommends that 
ode45 is the best solver to give the first try for most 
problems. If ode45 is slow in solving the problem or 
failed to solve the problem, then stiffness is suspected 
and you can then go ahead to try ode15s. 

Ode45 

ode45 is a sophisticated built-in MATLAB 
function that gives very accurate solutions. Ode45 is 
based on a simultaneous implementation of an explicit 
fourth and fifth order Runge-Kutta formula called the 
Dormand-Prince pair. It is a one-step solver. This is 
the first solver to be tried for most problems. It is 
designed for non-stiff problems. Ode45 can use long 
step size and so the default is to compute solution 
values at four points equally spaced within the span of 
each natural step. 

The Dormand-Prince pair is an explicit method and a 
member of the Runge-Kutta family of solvers. The 
method employs function evaluations to calculate 

fourth and fifth order accurate solutions. The 
difference between these solutions is then taken to be 
the error of the fourth order solution.  

Ode23 

This solver is designed for solving non-stiff 
problems. It’s method is based on the 2nd and 3rd 
Order Runge-Kutta pair called the Bogacki-Shampine 
method. Ode23 is less expensive than ode45 in that it 
requires less computation steps than ode45. But it is 
of a lower order, although it may be more efficient at 
crude tolerances and in the presence of mild stiffness. 
Ode23 is a one-step solver. 

The Bogacki-Shampine method is a Runge-Kutta 
method of order 3 with four stages proposed by 
Przemyslaw Bogacki and Lawrence F. Shampine in 
1989. It uses three function evaluations per step. It has 
embedded second order method which is used to 
implement adaptive step size for the method.  
Ode113 

Ode113 is a multi-step variable order method 
which uses Adams–Bashforth–Moulton predictor-
correctors of order 1 to 13. It may be more efficient 
than ode45 at stringent tolerances and when the ODE 
problem is particularly expensive to evaluate. It is 
designed for non-stiff problems. 

Ode 15s 

Ode15s a variable order solver whose algorithm 
is based on the numerical differentiation formulas 
(NDFs) and optionally along with the backward 
differentiation formulas (BDFs) which is also called 
Gear’s method. This is a multi-step solver that is 
designed for stiff problems. This is the next 
recommended solver if ode45 fails or is too slow. 

 The Backward Differentiation Formula is a 
family of implicit methods for the numerical 
integration of ordinary differential equations. They 
are linear multi-step methods and for a given function 
and time, they approximate the derivative of that 
function using information from already computed 
times. BDF methods are implicit and, as such, require 
the solution of nonlinear equations at each step. 

Ode23s 

This is based on a modified Rosenbrock formula 
of order 3 and 2 with error control designed for stiff 
systems. It advances from 𝑦𝑛 to 𝑦𝑛+1 with the second 
order method and controls the local error by taking 
the difference between the third and second order 
numerical solutions. This is a one step method and 
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can solve some kinds of stiff problems for which 
ode15s is not effective. 

Ode23t 

The algorithm implemented in this solver is the 
trapezoidal rule along with a free interpolant. This 
solver is designed for only moderately stiff problems 
and when the solution required should be without 
damping.  

Ode23tb 

Is an implementation of TR-Backward 
Differentiation Formula 2. This is an implicit Runge-
Kutta formula with a first stage that is a trapezoidal 
rule step and a second stage that is a backward 
differentiation formula of order 2.  This method may 

be used when crude error tolerance is required to 
solve stiff systems. 

 

Ode15i 

This solver is designed based on a variable order 
method for fully implicit differential equations. This 
is the only solver that is designed for fully implicit 
differential equations. 

 

 

 

 
A Summary of MATLAB ODE Solvers 

Solver Kind of Problem Base Algorithm 
Ode45 Non-stiff differential equations Runge-Kutta 
Ode23 Non-stiff differential equations Runge-Kutta 
Ode113 Non-stiff differential equations Adams-Bashfort-Moulton 
Ode15s Stiff differential equations Numerical Differentiation 

Formulas (Backward 
Differentiation Formulas) 

Ode23s Stiff differential equations Rosenbrock 
Ode23t Moderately stiff differential 

equations 
Trapezoidal Rule 

Ode23tb Stiff differential equations TR-BDF2 
Ode15i Fully implicit differential equations BDFs 

 
5. MATLAB ODE SOLVER SYNTAX 

Apart from the ode15i solver, all other ODE 
solvers in MATLAB have the same syntax. This 
makes it easy to apply different methods to the same 
problem. The basic syntax for all the solvers is 

[𝑡, 𝑦] = 𝑠𝑜𝑙𝑣𝑒𝑟(𝑓, 𝑡𝑠𝑝𝑎𝑛, 𝑦0,𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

Where 𝑠𝑜𝑙𝑣𝑒𝑟 is the ode solver method, e.g. ode45, 
ode23 and others. 

The output arguments are: 

𝒕 Column vector of time points 
𝒚 Solution array 

 

The input arguments are: 

6. Optional Parameters. 

The default integration properties for the ODE 
solvers are selected to handle common problems. It is 

possible to use optional parameters to improve ODE 
solvers performance. This will override the default 
integration properties of the solver. 

The optional properties that can be set are in 
several categories. Some of them are Error Control 
Properties, Solver Output Properties, Step-Size 
Properties, Event Location Property, Jacobian Matrix 
Properties.  

On the error control properties, each MATLAB 
ODE solver is designed in a manner that the estimated 
local error in each component of the solution satisfies 
a given error test. For a single equation the estimated 
local error in passing from 𝑦(𝑡𝑛) to 𝑦(𝑡𝑛+1), call it 
𝑒(𝑡𝑛), is to satisfy |𝑒(𝑡𝑛)| ≤ 𝑚𝑎𝑥{𝐴𝑏𝑠𝑇𝑜𝑙,𝑅𝑒𝑙𝑇𝑜𝑙 ·
|𝑦(𝑡𝑛)|}. The error tolerances 𝐴𝑏𝑠𝑇𝑜𝑙 and 𝑅𝑒𝑙𝑇𝑜𝑙 can 
be specified by running the MATLAB program 
𝑜𝑑𝑒𝑠𝑒𝑡; when left unspecified, the default tolerances 
are 𝐴𝑏𝑠𝑇𝑜𝑙 =  10−6, 𝑅𝑒𝑙𝑇𝑜𝑙 =  10−3 . 

The step size properties specify the size of the 
first step the solver should use and the upper bound 
on the step size that the solver can use. The property 
that specifies the initial step size is called 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑒𝑝 
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and the property that specifies the upper bound on 
solver step size is called 𝑀𝑎𝑥𝑆𝑡𝑒𝑝.  To set optional 
parameter properties, we use the 𝑜𝑑𝑒𝑠𝑒𝑡 function and 
the syntax is as shown below: 

𝑜𝑝𝑡𝑖𝑜𝑛𝑠
= 𝑜𝑑𝑒𝑠𝑒𝑡(‘𝑛𝑎𝑚𝑒1’, 𝑣𝑎𝑙𝑢𝑒1, ‘𝑛𝑎𝑚𝑒2’, 𝑣𝑎𝑙𝑢𝑒 2, … ) 

‘name1’ refers to the property name that has the 
specified value ‘value1’. Any property that is 
unspecified retains its default value. 

For example, to set the initial step size, we have 

𝑜𝑝𝑡𝑖𝑜𝑛𝑠 = 𝑜𝑑𝑒𝑠𝑒𝑡(′𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑒𝑝′, 0.0001) 

7. PROCEDURE FOR SOLVING FIRST ORDER 
ODEs USING MATLAB SOLVERS 

1. Code the Problem 
In this step, you develop an m-file to contain the 
given function. For the general problem of the form 
𝑦 ′ = 𝑓(𝑡,𝑦), the code will look like this: 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝1(𝑡,𝑦) 
𝑑𝑦𝑑𝑡 = 𝑓(𝑡, 𝑦); 
𝑒𝑛𝑑 
 
For example, consider the problem, 𝑦 ′ = 2𝑡 + 1, the 
code for the problem is: 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝1(𝑡,𝑦) 
𝑑𝑦𝑑𝑡 = 2 ∗ 𝑡 + 1; 
𝑒𝑛𝑑 
The names 𝑑𝑦𝑑𝑡 𝑎𝑛𝑑 𝑝1 in the code above do not 
play any role in the definition of the function. Any 
name can be used as long as they conform with 
MATLAB naming rules for functions and m-files. 

2. Apply a Solver to the Problem 
Make a decision of the solver you intend to use. Then 
call the solver using the syntax in Section 3.4.1 and 
pass the function, the time interval you desire for your 
solution and the initial condition vector to it. For 
example, to apply ode45 solver to the problem 
described by 𝑝1 in step 1 above on the time interval 
between 0 and 10, with initial condition 𝑦(0) = 0, the 
following code is typed into the command window: 
𝑡𝑠𝑝𝑎𝑛 = [0, 10]; 
𝑦0 = 0 
[𝑡, 𝑦] = 𝑜𝑑𝑒45(@𝑝1, 𝑡𝑠𝑝𝑎𝑛, 𝑦0) 

3. Retrieve the Solver Output 

You can simply use the 𝑝𝑙𝑜𝑡 command to view the 
solver output. i.e. 𝑝𝑙𝑜𝑡(𝑡,𝑦) 

You can also display the results by using the 
𝑑𝑖𝑠𝑝 command i.e. 𝑑𝑖𝑠𝑝([𝑡, 𝑦]) 

Phase portrait of the solution can also be retrieved. 

PROCEDURE FOR SOLVING HIGHER ORDER 
ODEs USING MATLAB SOLVERS 

1. Rewrite the second order ODE as a system of first 
order ODEs. 
For the nth-order ODE: 𝑦(𝑛) = 𝑓�𝑡,𝑦,𝑦′, … , 𝑦(𝑛−1)� 
Set 𝑦1 = 𝑦,  𝑦2 = 𝑦′, … , 𝑦𝑛 = 𝑦(𝑛−1) 
The result of this substitution will be an equivalent 
system of 𝑛 first order ODEs 

𝑦1′ = 𝑦2 
𝑦2′ = 𝑦3 

⋮ 
𝑦𝑛′ = 𝑓(𝑡, 𝑦1,𝑦2, … , 𝑦𝑛) 

For example, consider the second order ODE 
𝑦′′ = 𝑓(𝑡, 𝑦,  𝑦′) 
Set, 𝑦1 = 𝑦  and 𝑦2 = 𝑦′ 
This implies that, 𝑦1′ = 𝑦′ = 𝑦2 and 𝑦2′ = 𝑦′′ =
𝑓(𝑡,𝑦1,𝑦2) 
So, we obtain the system of first order ODEs, 

𝑦1′ = 𝑦2 
𝑦2′ = 𝑓(𝑡, 𝑦1,𝑦2) 

 
2. Code the system of First Order ODEs. 

Develop an m-file containing the system of first order 
ODEs obtained from splitting the higher order ODE 
in question. For the general second order ODE in step 
1 above, the code will look like this: 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑦𝑑𝑡 = 𝑝2(𝑡,𝑦) 
𝑑𝑦𝑑𝑡(1) = 𝑦(2); 
𝑑𝑦𝑑𝑡(2) = 𝑓(𝑡,𝑦1,𝑦2); 
𝑑𝑦𝑑𝑡 = [𝑑𝑦𝑑𝑡(1);  𝑑𝑦𝑑𝑡(2)]; 
𝑒𝑛𝑑 
 

3. Apply a Solver to the Problem. 
You use the solver syntax to call the solver you want 
to use as in the case of the first order ODE. 

4. Retrieve the Solver Output 
You can simply use the 𝑝𝑙𝑜𝑡 command to view the 
solver output. i.e. 𝑝𝑙𝑜𝑡(𝑡,𝑦) 

You can also display the results by using the 
𝑑𝑖𝑠𝑝 command i.e. 𝑑𝑖𝑠𝑝([𝑡, 𝑦]) 

Phase portrait of the solution can also be retrieved. 

APPLICATION OF MATLAB ODE SOLVERS 
TO NON-STIFF INITIAL VALUE PROBLEMS 
OF ODEs. 

In this section, we apply the relevant solvers to 
three non-stiff  problems (Problems 1, 2 and 3) and 
three stiff problems (Problems 4, 5 and 6). Solution 
graphs and Phase Portraits of the systems are also 
presented. 

Problem 1: 
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The state variable equations of a continuous system 
describing the dynamic behaviour of the system is 
given by 

𝑦1′ = 5𝑦2 

𝑦2′ = −5𝑦1 − 5𝑦2 + 5 

𝑦1(0) = 𝑦2(0) = 0 

Develop a MATLAB program that plots 𝑦1 𝑎𝑛𝑑 𝑦2 on 
the same graph for 𝑡 = 0 𝑡𝑜 10. obtain the phase 
portrait of the system. 

Source: Exercises from Ogbonnaya (2008) 

Solution: Using ode45 to solve the problem: 

 

 

 

Phase Portrait of the System 

 

Problem 2. 

Lotka-Volterra Equations 

The populations of two species, a prey denoted by 𝑦1 
and predator denoted by  𝑦2, can be modeled by a 
system of ODEs:   

𝑦1′  =  𝑏𝑦1 –  𝑐𝑦1𝑦2   

𝑦2’ =  −𝑑𝑦2  +  𝑐𝑦1𝑦2   

due to Lotka and Volterra.   

The parameters 𝑏 and 𝑑 govern the birth rate of prey 
and death rate of predators, respectively, and the 
parameter 𝑐 governs the interaction of the two 
populations.  With the parameter values 𝑏 =  1,𝑑 =
 10, and 𝑐 =  1, and initial conditions 𝑦1(0)  =  0.5 
and 𝑦2(0)  =  1  

(the populations are normalized, and we treat them as 
continuous variables), use MATLAB function ode45 
to solve this system numerically, integrating to 
𝑡 =  10.  Plot each of the two populations as a 
function of time, and on a separate graph plot the 
trajectory of the point (𝑦1(𝑡),𝑦2(𝑡)) in the plane.  

Source: Heath (1997) 

Solution: 

Our system of ODEs now become 

𝑦1′  =  𝑦1 – 𝑦1𝑦2   

𝑦2’ =  −10𝑦2  +  𝑦1𝑦2   

𝑦1(0)  =  0.5 ,  𝑦2(0)  =  1 

Implementing ode45 for the problem: 
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Lorentz Equations 

The Lorentz equations are used to simulate the 
convection of a layer of fluid of infinite horizontal 
extent heated from below.  The model is a simplified 
version of the heating of the atmosphere.   The 
equations are obtained by expanding the terms for 
temperature and pressure involved in the problem 
with their Fourier series expansion and simplifying 
the expansion to the first three modes represented by 
the variables x, y, and z.  The resulting system of 
equations is   

𝑑𝑥
𝑑𝑡

 =  𝜎 (−𝑥 + 𝑦)  

𝑑𝑦
𝑑𝑡

 =  𝑟𝑥 −  𝑦 −  𝑥𝑧  

𝑑𝑧
𝑑𝑡

 =  𝑥𝑦 −  𝑏𝑧   

where  

𝜎 , 𝑟, and 𝑏 are constants that result from combining 
physical parameters of the problem. Solve the Lorentz 
equations for the following combination of 
parameters:   

𝜎 =  10, 𝑟 =   75,𝑏 =   2.666,𝑥(0)  =  1,𝑦(0)  
=  1, 𝑧(0)   =  1   

Plot the signals 𝑥 − 𝑣𝑠 − 𝑡,𝑦 − 𝑣𝑠 − 𝑡, 𝑧 − 𝑣𝑠 − 𝑡, as 
well as the phase portraits 𝑥 − 𝑣𝑠 − 𝑦,𝑥 − 𝑣𝑠 − 𝑧, 
and 𝑦 − 𝑣𝑠 − 𝑧.    

Source: Gilberto (2004) 

Solution: 

Our system of ODEs now become: 

𝑑𝑥
𝑑𝑡

 =  10(−𝑥 + 𝑦)  

𝑑𝑦
𝑑𝑡

 =  75𝑥 −  𝑦 −  𝑥𝑧  

𝑑𝑧
𝑑𝑡

 =  𝑥𝑦 –  2.666𝑧   

𝑥(0)  =  1, 𝑦(0)  =  1, 𝑧(0)   =  1   

 

Solving the problem using ode45: 
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Comparison of ode45, ode23 and ode113 for Problems 1, 2, and 3 
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Solver Elapsed Time (s) Successful Steps Failed 
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Function 
Evaluation 

Ode45 0.020157 40 6 277 
Ode23 0.540800 87 9 289 
Ode113 0.489211 90 5 186 

Problem 2 Ode45 0.033996 76 8 505 
Ode23 Failed  
Ode113 Failed  

Problem 3 Ode45 0.025690 49 8 343 
Ode23 0.035048 145 14 478 
Ode113 0.054591 140 10 291 
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APPLICATION OF MATLAB ODE SOLVERS 
TO STIFF INITIAL VALUE PROBLEMS OF 
ODEs. 

Problem 4. 

Van der Pol System 

The Van der Pol system is a non-linear oscillator. 
This is a classical stiff problem in the field of 
electrical engineering and was first reported in 1927 
by Balthazar Van der Pol and his colleague Van der 
Mark. The mathematical representation of the system 
is: 

𝑦1′ = 𝑦2 

𝑦2′ = 𝛼(1− 𝑦12)𝑦2 − 𝑦1 

The stiffness can be controlled by changing the 
parameter 𝛼.  𝛼 = 1000 will result in a stiff case. We 
shall solve the system with the initial conditions 
𝑦1(0) = 2 and 𝑦2(0) = 0 on the interval 0 to 3000.  

Source: Yihai (2000) 

Solution 

Our system of ODEs now become: 

𝑦1′ = 𝑦2 

𝑦2′ = 1000(1− 𝑦12)𝑦2 − 𝑦1 

𝑦1(0) = 2,  𝑦2(0) = 0 

 

Solving with ode15s: 

 

Phase Portrait of the System 

 

Problem 5: 

The Robertson’s Problem 

Consider the system below on the interval 0 ≤ 𝑡 ≤
5000 

𝑦1′ = −.04𝑦1 + 104𝑦2𝑦3 

𝑦2′ = .04𝑦1 − 104𝑦2𝑦3 − 3.107𝑦22 

𝑦3′ = 3.107𝑦22 

𝑦1(0) = 1,𝑦2(0) = 0, 𝑦3(0) = 0 

 

 

 

 

 

Solution: 

Solving with ode15s: 
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Problem 6 

Consider the system of stiff differential equations on 
the interval 0 ≤ 𝑡 ≤ 20 

𝑦1
; = 998𝑦1 + 1998𝑦2 

𝑦2′ = −999𝑦1 − 1999𝑦2 

𝑦1(0) = 1,   𝑦2(0) = 0 

 

 

 

 

 

 

 

 

 

Solution: Solving with ode15s 

 

 

Phase Portrait of the Solution 

 

Comparison of ode15s, ode23s and ode23t for Problems 4, 5, and 6 

 
 
 
 
Problem 
4 

Solver Elapsed 
Time (s) 

Successful 
Steps 

Failed 
Attempts 

Functions 
Evaluated 

Linear 
Systems 
Solved 

Ode15s 0.424216 591 225 1883 1747 
Ode23s 0.549822 743 17 3751 2280 
Ode23t 0.520989 776 94 2121 2012 

Problem  
5 

Ode15s 0.067788 107 11 261 227 
Ode23s 0.705399 93 2 565 285 
Ode23t 0.520620 99 8 284 250 

Problem  
6 

Ode15s 0.049062 90 1 153 149 
Ode23s 0.053143 68 0 342 204 
Ode23t 0.066586 108 0 206 202 
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The use of MATLAB is very effective in proffering 
numerical solution to initial value problems of  
ordinary differential equations as seen in this work. 
Calculations that could run through pages and days 
are obtained in a matter of seconds. Accuracy is also 
maintained. Further studies on the use of optional 
parameters to enhance performance of solvers is 
recommended. 
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